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Abstract 

 The effect of the Proca photon mass mph and cosmic vector potential AC on the dynamics 
of the Solar wind is considered. For large-enough values of the parameter 

  

! 

AC mph

2 ,  the Solar wind 
structure at the distance ~ 40 AU from the Sun would change significantly with respect to the 
actually observed flow. Absence of such deviations gives an upper bound on the parameter 

  

! 

AC mph

2  9 orders of magnitude less than in laboratory experiments measuring torque on a toroidal 
magnet.  
 
PACS Numbers: 03.50De, 14.70.Bb, 96.50.Bh 
 

A nonzero fixed photon mass would make the vector potential of the magnetic field an 

observable quantity having a direct dynamical impact on the conducting media. In this paper we 

consider the possible effect of the vector potential produced by the currents at the Galactic and 

extra-Galactic scales (“cosmic” vector potential) on the Solar wind at large distances from the 

Sun. Thus we study dynamics of the largest “test body” available in the Solar system, the Solar 

wind plasma filling the whole heliosphere.  

The currently accepted upper bound on the photon mass [1] is impressively small, 

mph<1.5×10-51g, or 1.5×10-24 of the electron mass. Still, even at this level, the finiteness of the 

photon mass would have a significant effect on electromagnetic phenomena occurring at the 

scales exceeding the photon Compton length 
    

! 

D = h /mphc , with mph , c and h being the photon 

mass, the speed of light, and the Planck constant, respectively. For the currently accepted value  

of mph, one has    

! 

D  ≈1.5×1013 cm. 

The interrelation between the finite (albeit small) photon mass  and large-scale natural 

electromagnetic phenomena has been recognized decades ago by E. Schroedinger [2] who 
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suggested to use measurements of the geomagnetic field to look for possible deviations from the 

standard electrodynamics and concluded that     

! 

D >10
4
km  (i.e., mph<3×10-47g). Later, the 

measurements of the magnetic field of Jupiter by the Pioneer 10 spacecraft, allowed lowering the 

mass limit to 10-48 g, this corresponding to D~3×1010cm [3].   

Going to even greater scales means that one will have to account for the presence of the 

ambient plasma, which, generally speaking, carries non-negligible currents. Therefore, getting to 

larger scales makes it necessary to analyze a coupled system of a magnetic field and a plasma, 

and the dynamics of the conducting medium becomes an inseparable part of the problem, see, 

e.g., Refs. [4-6]; see also insightful reviews by Goldhaber and Nieto [7, 8].  

In the classical domain (as relevant to the subject of this paper), the finiteness of the 

photon mass manifests itself in the change of the Ampere law, which now becomes:  

    

! 

" # B +
A

D
2

=
4$

c
j          (1) 

with B , A and j being the magnetic field, the vector potential, and the current density, 

respectively, and 

! 

B = " # A . The displacement current is neglected, as we are concerned with 

deeply non-relativistic systems. Eq. (1) is a consequence of the Proca equations, describing a 

massive photon [9]; see also Refs. [7, 8, 10, 11]. The finite photon mass enters the problem via 

the second term in the left-hand side (l.h.s.) of Eq. (1): for the zero-mass photon (  

! 

D "#) we 

recover the standard Ampere law. This correction can be cast in terms of a “pseudocurrent” 

    

! 

j
P
" #cA / 4$D

2  so called because it contributes like a regular current to 

! 

" # B (see Refs. [7,8]).  

The currently accepted bound on the photon mass [1] was obtained in Ref. [12] by the 

analysis of the solar wind data at the Pluto orbit collected by the Voyager 1 and 2 missions. The 

approach used in Ref. [12] was as follows: Based on the knowledge of the global magnetic field 

of the Solar wind, one could evaluate its vector potential A and – via Eq. (1) -  the current j 
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required to sustain the observed magnetic field B. This is particularly simple for the zone well 

beyond the Earth orbit, where the average B is almost entirely azimuthal. The latter was 

predicted in the original Parker model [13] and confirmed up to the distances of tens of 

astronomical units by a number of space missions [14-16]. The average flow in this zone is 

strongly supersonic and essentially radial, with the average velocity in the equatorial region 

vr≈450 km/s independent of the distance (“ballistic” flow).  

For a large-enough photon mass (small-enough D), the second term in the l.h.s. of Eq. (1) 

becomes dominant, and j becomes much larger than in the case of a massless photon. This leads 

to an increase of the j×B force compared to the mph=0 case. For a large-enough value of mph 

(small enough   

! 

D ), deviations from the observed flow structure would become grossly 

incompatible with the really observed situation, thereby setting the upper bound on the photon 

mass. This then yielded an upper bound for mph at the level of mph< 1.5×10-51g [12]. 

By applying similar arguments to larger astrophysical systems, e.g., to tenuous 

interstellar plasmas in galaxies, one might hope to significantly improve the estimate. This 

approach was taken in Refs. [17, 18] where the limit was given as ~ 10-59 g. There was, however, 

no analysis presented in these papers as to what specific changes in the observational data would 

occur should the mass be actually much higher, say, 10-57 g. Identifying such changes is a non-

trivial task, given that the interstellar gas is continuously “recycled” by much heavier and 

energy-rich constituents of our galaxy, the stars and dense molecular clouds with embedded 

protostars (for details and further references see Ref. [19]). In the same direction act effects of 

the fine structure of the magnetic field, completely ignored in Refs. [17, 18]. All this makes it 

difficult to obtain a “hard” upper bound on the photon mass based on the arguments of Refs. [17, 

18]. On the other hand, improved observations may sometime change this situation [8].  



 4 

Another approach to the assessment of possible effects of large scale magnetic field 

(Galactic and beyond) is based on the use of an interesting consequence of Eq. (1): as was shown 

by R. Lakes [20], the presence of the second term in the l.h.s. leads to the appearance of a torque 

acting on a current-carrying solenoid. Measuring this torque in a laboratory experiment, one can, 

in principle, evaluate the magnitude of the term AC/D2. The measurement technique developed by 

Lakes was based on a special highly sensitive rotational torsion balance. In Ref. [20], the upper 

bound on AC/D2 was established at the level of 2⋅10-7 G/cm. Further refinements in the torsion 

balance approach have led to the lowering of the upper bound to 10-9 G/cm [21].  

Constraining the parameter 
  

! 

AC mph

2  (or, equivalently, AC/D2) does not allow one to 

independently constrain either Ac or mph. However, this parameter is interesting on its own.  In 

particular, should it be found finite, it would signal the presence of a finite Proca mass, although 

the mass itself would remain undetermined. The results of our paper (see below) raise the bar on 

the limitation of this parameter by 9 orders of magnitude compared to the previous best estimate 

[21].   

Note that, in the analysis of Ref. [12] briefly summarized above, it was assumed that the 

contribution of the distant (Galactic and beyond) currents to the vector potential in the 

heliosphere is negligible, and the vector potential is entirely determined by the heliospheric 

magnetic field. A rough estimate of the heliospheric vector potential at the distances ~ 30 – 40 

A.U. from the Sun would be AH~109 G⋅cm. In order to have significant impact on the Solar wind, 

the cosmic contribution to the vector potential, AC, should exceed this value.  

In this paper, we consider the effect of a possible larger vector-potential of the cosmic 

fields, AC>AH, on the dynamics of the Solar wind at the distances ~ tens of A.U. The contribution 

of the cosmic magnetic fields to the vector potential A inside the heliosphere should be almost 
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perfectly uniform, because of the very large scale of the cosmic field: the expected characteristic 

spatial scale of the Galactic field is LC~ 1 kpc, so that the variation of the vector potential over 

the heliosphere (LH~ 1010 km)  would be ~ LH/LC< 10-6 and even smaller for more distant 

(extragalactic) sources.  

The momentum equation for the solar wind at large distances from the Sun is: 

  

! 

" v # $v( ) = j % B / c & f         (2) 

We neglect the pressure term, given that the flow is highly supersonic. For the reference case 

where the photon mass is zero, the current is determined by the standard Ampere law, 

  

! 

" # B = 4$j/c , and the r.h.s. of Eq. (2) can be evaluated at some distance L from the Sun as 

  

! 

B
2
/ 8"L. On the other hand, the l.h.s. can be evaluated as 

  

! 

"v2 / L. The ratio of the l.h.s. and the 

r.h.s. is, therefore, ~
  

! 

B
2
/ 8"#v2 . The spacecraft data show that it is very small, less than 10-2 (e.g. 

Ref. [14-16] and references therein), this being consistent with the ballistic-like average flow.  

In the case where the vector potential is determined by cosmic sources, the expression for 

the corresponding contribution to the current is just 

   

! 

j = cAC / 4"D
2 ,         (3) 

and the estimate of the r.h.s. of Eq. (2) becomes ~     

! 

A
C
B / 4"D

2. So long as this force remains 

small, the flow remains ballistic with a constant expansion velocity. This situation corresponds to 

a large photon Compton length (small photon mass). However, with decreasing Compton length, 

the additional force term may become comparable to the l.h.s. and lead to a significant change of 

the flow features (e.g., a systematic increase or decrease of the radial velocity between the orbits 

of, say, Jupiter  and Pluto). At a certain level of this change, it will become incompatible with the 

spacecraft data, leading thereby to an upper bound for     

! 

A
C
/ D

2.  
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The direction of the galactic vector potential is not known. We denote its components 

parallel and perpendicular to the rotation axis as A|| and A⊥, respectively. We use spherical 

coordinates (r, ϕ, θ) with the latitudinal angle θ measured from the equatorial plane and 

longitudinal angle ϕ measured from the projection of the vector potential onto this plane. We 

denote the angle formed by the cosmic vector potential with the equatorial plane by θC, so that 

  

! 

A
||

= A
C
sin"

C
,   

! 

A" = A
C
cos#

C
, where AC is the absolute value of the cosmic vector potential.  

As the detectable velocity variation is modest, less than a factor of 2, we look for the 

change of the velocity field produced by the force f (Eq. (2) in a perturbative manner. In the 

zeroth order we ignore this force (by setting the r.h.s. in Eq. (2) to zero) and consider a purely 

radial flow with a constant radial velocity: 
  

! 

v
r

= v
0
(" ); vθ=vϕ=0, where v0 is the radial velocity at 

some reference radius r0 (say, the Jupiter orbit). The density distribution is then 
  

! 

" = "
0

r
0
/ r( )

2.  

As the magnetic field at sufficiently large radii has predominantly ϕ component, the force 

    

! 

f = j " B / c # A " B / 4$D
2 has only r and 

! 

"  components,  

    

! 

fr = "AC sin#C cos# + cos#C sin# cos$( )B$ / 4%D
2 

    

! 

f" = AC # sin"C sin" + cos"C cos" cos$( )B$ / 4%D
2 .    

For Bϕ one has approximately [14]: 
  

! 

B" = B" 0(# )(r0 / r ).      

 Linearizing the l.h.s. of Eq. (2) with respect to the velocity perturbations, one finds: 

  

! 

v
0r

"#vr

"r
+
#v$

r

"v
0r

"%
=

fr

&
0

r

r
0

' 

( 
) 

* 

+ 
, 

2

;       (4) 

  

! 

v
0r

"(r#v$ )

r"r
=

f$

%
0

r

r
0

& 

' 
( 

) 

* 
+ 

2

.        (5) 
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For the perturbation of the latitudinal velocity component on the way between some 

radius r0 (the radius of the Jupiter orbit) to a much larger radius r>>r0 (the radius of the Pluto 

orbit) one finds from Eq. (5): 

  

! 

"v# / v0 = 2R $ sin#
C
sin# + cos#

C
cos# cos%( ) / 3,     (6) 

where  

    

! 

R =
rB" #( ) A

C

8$%v
0

2
D
2

          (7)  

is a dimensionless parameter that characterizes the effect of the cosmic potential on the Solar 

wind at a distance r from the Sun (r must be greater than several A.U., so that the global 

magnetic field would already become almost entirely azimuthal). Since R~r2, the perturbation 

grows as r2 with the radius. 

As the most detailed Solar wind data are available for the zone of not-too-high latitudes, 

we will be focusing on the flow in this zone. Because of a north-south symmetry of the average 

flow, the term 

! 

"v
0
/"# / v

0
 is small here and we neglect it in Eq. (4).   This yields:  

  
  

! 

"v
r
/ v

0
= R # sin$

C
cos$ # cos$

C
sin$ cos%( ) ,     (8) 

 If the parameter R is much less than 1, the deviations from an unperturbed average flow 

with constant radial velocity are small.  If, however, R were large, then the whole structure of the 

plasma flow would have changed and become incompatible with the actual picture (see specifics 

below). So, the upper bound on the ratio     

! 

A
C
/ D

2can be roughly determined by the condition R<1.  

 When using Eq. (8), we will be substituting parameters of the Solar wind at r~ 40 AU at 

low to moderate latitude – an area visited by several spacecraft. The parameters in the vicinity of 

the equatorial plane are (e.g., [22]): v0 = 450 km/s, Bϕ=2 µG, ρ= 2⋅10-26
 g/cm3. For this set of 

parameters, the condition R<1 yields  
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! 

A
C
/ D

2
< 5 "10

#19
G / cm         (9) 

i.e., 11 orders of magnitude lower than in Ref. [20] and 9 orders of magnitude lower than in Ref. 

[21].  Note that this limit is obtained on the basis of direct in situ measurements of the Solar wind 

and in this sense is as reliable as the limits obtained by the laboratory experiments [20, 21].  

 Now we provide some specifics regarding the kind of modifications of the Solar wind 

that would be produced by the cosmic vector potential. We start from the case where AC has only 

an axial component, i.e., θC=π/2.   Then, according to Eqs. (6), (8), the dominant effect in the 

equatorial zone will be on the radial velocity. As the azimuthal magnetic field changes sign from 

the southern to the northern hemisphere [14-16], the radial flow will be slowed down in one 

hemisphere and accelerated in the other (Fig. 1a). The sign depends on the phase of the Solar 

cycle. As the average magnetic field of the Solar wind changes sign every 11 years, the described 

acceleration/deceleration effect would flip over every 11 years (Fig. 1a, dashed and dotted lines).   

Consider now the case where the cosmic vector potential is parallel to the equatorial 

plane, so that θC=0. Then, according to Eqs. (6), (8), the strongest effect in the near-equatorial 

region (small θ,  just outside the current sheet) will be experienced by the latitudinal motion. The 

effect varies with the longitude ϕ and is maximum for ϕ=00 and ϕ=1800, where the magnetic 

field of the Solar wind is perpendicular to the cosmic vector potential (for our choice of 

coordinates). The latitudinal velocity changes sign at the equator as shown in Fig. 1b. Dashed 

and dotted lines correspond to the flow that expands from the equator at ϕ=00 and compresses to 

the equator at ϕ=1800, respectively. After 11 years, this pattern would flip over. {In reality, the 

latitudinal velocity near the equator is small [16]}. This effect leads to a significant density 

increase/decrease near the equator at the corresponding longitudes. For R>1, this systematic 

change would be by more than a factor of 2. At an arbitrary orientation of the cosmic vector 
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potential, there will be a superposition of the two aforementioned effects: radial 

acceleration/deceleration independent of the longitude, and latitudinal compression/expansion of 

the flow with maxima at two diametrically-opposite longitudes.  

We have argued that the condition R~1 would already be incompatible with the 

observations. If, however, one wants to allow for possible ambiguities, one may leave R as a free 

parameter and replace Eq. (9) by     

! 

A
C
/ D

2
= 5 "10

#19
R,G / cm  as an upper bound. Assuming, e.g., 

that even a 3-fold systematic increase of the Solar wind velocity on the way from Jupiter to Pluto 

remains undetected, the value of R~10 would become compatible with the observations, leading 

to the corresponding 10-fold increase of the upper bound on     

! 

A
C
/ D

2.  

 It cannot be completely ruled out that analysis of the whole totality of the observational 

data will actually discern systematic variations of the solar wind flow compared to the canonical 

model based on the assumption that mph=0. Such an analysis would however be well outside the 

scope of this paper. 

One might hope that direct spacecraft measurement of the current density in the Solar 

wind plasma might allow an independent evaluation of the parameter     

! 

A
C
/ D

2 via Eq. (3). This is, 

however, hardly possible as the current density remains too small for the values of     

! 

A
C
/ D

2 

constrained by Eq. (9). Indeed, for     

! 

A
C
/ D

2 taken from Eq. (9), the current density is 1.5⋅10-18 

A/cm2. For the particle density at the Pluto’s orbit ~ 10-2 cm-3, this corresponds to the relative 

velocity of the electrons and ions of less than 103 cm/s, whereas electron thermal velocity is ~ 

108 cm/s. Measuring the electron distribution function with an accuracy of 10-5 is not feasible.  

The upper bound on the photon mass cannot be found without the knowledge of the 

cosmic vector potential [20, 23]. The dependence of the mass limit on the cosmic vector 

potential is illustrated by Fig. 2. We normalize the vector potential to some reference value of 
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! 

AC
ref =1015 G⋅cm (which approximately corresponds to the field of 1 µG at the scale of 300 pc 

and can be thought of as a rough estimate of the vector potential created by the orderly magnetic 

field in a spiral arm of our Galaxy, if such a field is present). Using Eq. (9) and relation 

    

! 

D = h /mphc , we then find: 

  

! 

mph(g ) < 5 "10
#55 RAC

ref
/ AC  .       (10)  

When AC becomes less than the vector potential of the Solar wind (10-6AC
ref), the mass 

becomes independent of AC and reaches the currently accepted upper bound for mph. We 

emphasize again that, without independent information about the cosmic vector potential, Eq. 

(10) does not allow one to improve the estimate of  [12]. 

 In summary: Based on the analysis of the effects of the cosmic vector potential AC on the 

Solar wind, an improved upper bound on the product 
  

! 

AC mph

2  has been established which is 9 

orders of magnitude lower than the lowest of the previously reported values. The main results are 

expressed by Eqs. (9) and (10).  

 Prepared by LLNL under Contract DE-AC52-07NA27344.
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Fig. 1 A sketch of the latitudinal variation of the solar wind velocity near the heliomagnetic 
equator: a) Radial velocity; the solid line represents an approximately symmetric profile of the 
real Solar wind (e.g., [16]). The dashed line corresponds to the situation with the parameter R 
[Eq. (7)] of order 1 and the wind accelerated in the Northern hemisphere; the dotted line 
corresponds to the same R, but to the next half-period of the Solar cycle. At higher values of R, 
the stagnation would occur in one of the hemispheres, leading to the structure completely 
incompatible with the observed picture. b) Latitudinal velocity. Actual latitudinal velocity is  
close to zero and would coincide with the horizontal axis. For R~1, the latitudinal velocity at the 
distance of 300 from the equator would be comparable to the radial flow velocity of ~ 450 km/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The dependence of the upper bound on the photon mass (normalized to m*ph=1.5×10-51 g) 
vs. the cosmic vector potential (normalized to the reference value AC

ref=1015 G⋅cm), for R=10. At 
low values of AC the mass is determined by the solar wind vector potential and becomes 
independent of AC.  The allowed range of parameters mph  and AC  lies below the curve.  
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